Hypothesis: HR 92:
\(C(WO,{\Bbb R})\): Every well ordered family of non-empty subsets of \({\Bbb R}\) has a choice function.
Conclusion: HR 128:
Aczel's Realization Principle: On every infinite set there is a Hausdorff topology with an infinite set of non-isolated points.
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N1\) The Basic Fraenkel Model | The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\) |
\(\cal N2\) The Second Fraenkel Model | The set of atoms \(A=\{a_i : i\in\omega\}\) is partitioned into two element sets \(B =\{\{a_{2i},a_{2i+1}\} : i\in\omega\}\). \(\mathcal G \) is the group of all permutations of \( A \) that leave \( B \) pointwise fixed and \( S \) is the set of all finite subsets of \( A \). |
Code: 3
Comments: