Hypothesis: HR 63:
\(SPI\): Weak ultrafilter principle: Every infinite set has a non-trivial ultrafilter.
Jech [1973b], p 172 prob 8.5.
Conclusion: HR 151:
\(UT(WO,\aleph_{0},WO)\) (\(U_{\aleph_{1}}\)): The union of a well ordered set of denumerable sets is well orderable. (If \(\kappa\) is a well ordered cardinal, see note 27 for \(UT(WO,\kappa,WO)\).)
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M47(n,M)\) Pincus' Model IX | This is the model of <a href="/articles/Pincus-1977a">Pincus [1977a]</a>, Theorem 2.1 \((E)\) |
\(\cal N2(\aleph_{\alpha})\) Jech's Model | This is an extension of \(\cal N2\) in which \(A=\{a_{\gamma} : \gamma\in\omega_{\alpha}\}\); \(B\) is the corresponding set of \(\aleph_{\alpha}\) pairs of elements of \(A\); \(\cal G\)is the group of all permutations on \(A\) that leave \(B\) point-wise fixed;and \(S\) is the set of all subsets of \(A\) of cardinality less than\(\aleph_{\alpha}\) |
\(\cal N15\) Brunner/Howard Model I | \(A=\{a_{i,\alpha}: i\in\omega\wedge\alpha\in\omega_1\}\) |
\(\cal N49\) De la Cruz/Di Prisco Model | Let \(A = \{ a(i,p) : i\in\omega\land p\in {\Bbb Q}/{\Bbb Z} \}\) |
Code: 3
Comments: