Hypothesis: HR 204:

For every infinite \(X\), there is a function from \(X\) onto \(2X\).

Conclusion: HR 152:

\(D_{\aleph_{0}}\): Every non-well-orderable set is the union of a pairwise disjoint, well orderable family of denumerable sets.  (See note 27 for \(D_{\kappa}\), \(\kappa\) a well ordered cardinal.)

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M2\) Feferman's model Add a denumerable number of generic reals to the base model, but do not collect them

Code: 3

Comments:


Edit | Back