Hypothesis: HR 307:
If \(m\) is the cardinality of the set of Vitali equivalence classes, then \(H(m) = H(2^{\aleph_0})\), where \(H\) is Hartogs aleph function and the {\it Vitali equivalence classes} are equivalence classes of the real numbers under the relation \(x\equiv y\leftrightarrow(\exists q\in {\Bbb Q})(x-y=q)\).
Conclusion: HR 224:
There is a partition of the real line into \(\aleph_1\) Borel sets \(\{B_\alpha: \alpha<\aleph_1\}\) such that for some \(\beta <\aleph_1\), \(\forall\alpha <\aleph_1\), \(B_{\alpha}\in G_{\beta}\). (\(G_\beta\) for \(\beta < \aleph_1\) is defined by induction, \(G_0=\{A: A\) is an open subset of \({\Bbb R}\}\) and for \(\beta > 0\),
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M5(\aleph)\) Solovay's Model | An inaccessible cardinal \(\aleph\) is collapsed to \(\aleph_1\) in the outer model and then \(\cal M5(\aleph)\) is the smallest model containing the ordinals and \(\Bbb R\) |
Code: 3
Comments: