Hypothesis: HR 82:

\(E(I,III)\) (Howard/Yorke [1989]): If \(X\) is infinite then \(\cal P(X)\) is Dedekind infinite. (\(X\) is finite \(\Leftrightarrow {\cal P}(X)\) is Dedekind finite.)

Conclusion: HR 289:

If \(S\) is a set of subsets of a countable set and \(S\) is closed under chain unions, then \(S\) has a \(\subseteq\)-maximal element.

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M1\) Cohen's original model Add a denumerable number of generic reals (subsets of \(\omega\)), \(a_1\), \(a_2\), \(\cdots\), along with the set \(b\) containing them

Code: 3

Comments:


Edit | Back