Hypothesis: HR 17:

Ramsey's Theorem I: If \(A\) is an infinite set and the family of all 2 element subsets of \(A\) is partitioned into 2 sets \(X\) and \(Y\), then there is an infinite subset \(B\subseteq A\) such that all 2 element subsets of \(B\) belong to \(X\) or all 2 element subsets of \(B\) belong to \(Y\). (Also, see Form 325.), Jech [1973b], p 164 prob 11.20.

Conclusion: HR 292:

\(MC(LO,\infty)\): For each linearly ordered family of non-empty sets \(X\), there is a function \(f\) such that for all \(x\in X\) \(f(x)\) is non-empty, finite subset of \(x\).

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M1(\langle\omega_1\rangle)\) Cohen/Pincus Model Pincus extends the methods of Cohen and adds a generic \(\omega_1\)-sequence, \(\langle I_{\alpha}: \alpha\in\omega_1\rangle\), of denumerable sets, where \(I_0\) is a denumerable set of generic reals, each \(I_{\alpha+1}\) is a generic set of enumerations of \(I_{\alpha}\), and for a limit ordinal \(\lambda\),\(I_{\lambda}\) is a generic set of choice functions for \(\{I_{\alpha}:\alpha \le \lambda\}\)
\(\cal M2\) Feferman's model Add a denumerable number of generic reals to the base model, but do not collect them
\(\cal M2(\langle\omega_2\rangle)\) Feferman/Truss Model This is another extension of <a href="/models/Feferman-1">\(\cal M2\)</a>
\(\cal M5(\aleph)\) Solovay's Model An inaccessible cardinal \(\aleph\) is collapsed to \(\aleph_1\) in the outer model and then \(\cal M5(\aleph)\) is the smallest model containing the ordinals and \(\Bbb R\)
\(\cal M6\) Sageev's Model I Using iterated forcing, Sageev constructs \(\cal M6\) by adding a denumerable number of generic tree-like structuresto the ground model, a model of \(ZF + V = L\)
\(\cal M13\) Feferman/Solovay Model This model is an extension of <a href="/models/Feferman-1">\(\cal M2\)</a> in which there are \(\omega_1\) generic real numbers, but no set to collect them
\(\cal M18\) Shelah's Model I Shelah modified Solovay's model, <a href="/models/Solovay-1">\(\cal M5\)</a>, and constructed a model without using an inaccessible cardinal in which the <strong>Principle of Dependent Choices</strong> (<a href="/form-classes/howard-rubin-43">Form 43</a>) is true and every set of reals has the property of Baire (<a href="/form-classes/howard-rubin-142">Form142</a> is false)
\(\cal M21\) Felgner's Model II Suppose \(\cal M \models ZF + V = L\). Define \(B=\{f: (\exists\alpha <\omega_1)f:\alpha\to\omega\}\)
\(\cal M25\) Freyd's Model Using topos-theoretic methods due to Fourman, Freyd constructs a Boolean-valued model of \(ZF\) in which every well ordered family of sets has a choice function (<a href="/form-classes/howard-rubin-40">Form 40</a> is true), but \(C(|\Bbb R|,\infty)\) (<a href="/form-classes/howard-rubin-181">Form 181</a>) is false
\(\cal M27\) Pincus/Solovay Model I Let \(\cal M_1\) be a model of \(ZFC + V =L\)
\(\cal M29\) Pincus' Model II Pincus constructs a generic extension \(M[I]\) of a model \(M\) of \(ZF +\) class choice \(+ GCH\) in which \(I=\bigcup_{n\in\omega}I_n\), \(I_{-1}=2\) and \(I_{n+1}\) is a denumerable set of independent functions from \(\omega\) onto \(I_n\)
\(\cal M30\) Pincus/Solovay Model II In this construction, an \(\omega_1\) sequence of generic reals is added to a model of \(ZFC\) in such a way that the <strong>Principle of Dependent Choices</strong> (<a href="/form-classes/howard-rubin-43">Form 43</a>) is true, but no nonprincipal measure exists (<a href="/form-classes/howard-rubin-223">Form 223</a> is false)
\(\cal M38\) Shelah's Model II In a model of \(ZFC +\) "\(\kappa\) is a strongly inaccessible cardinal", Shelah uses Levy's method of collapsing cardinals to collapse \(\kappa\) to \(\aleph_1\) similarly to <a href="/articles/Solovay-1970">Solovay [1970]</a>
\(\cal M39(\kappa,\lambda)\) Kanovei's model II This model depends on the two cardinals \(\kappa < \lambda\) such that both \(\kappa\) and \(\lambda\) have cofinality \(>\omega\) and neither \(\kappa\) nor \(\lambda\) can be written as \(\theta^+\) where \(\theta\) is a cardinal of countable cofinality and such that \(\aleph_2 \le\kappa\)
\(\cal M40(\kappa)\) Pincus' Model IV The ground model \(\cal M\), is a model of \(ZF +\) the class form of \(AC\)
\(\cal M42\) Bull's Model Let \(\cal M\) be a countable transitive model of \(ZFC +\) "There are uncountable regular cardinals \(\aleph_\alpha <\aleph_\beta < \aleph_\gamma\) such that \(\aleph_\alpha\) is \(\aleph_\gamma\)-supercompact; \(\aleph_\beta\) is the first measurable cardinal greater than \(\aleph_\alpha\); and \(\aleph_\gamma =|2^{\aleph_\beta}|\)." Using backward Easton forcing (which is due to Silver), Bull constructs a generic extension of \(\cal M\)
\(\cal M43\) Pincus' Model V This is the model of <a href="/articles/Pincus-1977a">Pincus [1977a]</a>, Theorem 2.1 \((A)\)
\(\cal M44\) Pincus' Model VI This is the model of <a href="/articles/Pincus-1977a">Pincus [1977a]</a>, Theorem 2.1 \((B)\)
\(\cal M45\) Pincus' Model VII This is the model of <a href="/articles/Pincus-1977a">Pincus [1977a]</a>, Theorem 2.1 \((C)\)
\(\cal M46(m,M)\) Pincus' Model VIII This model depends on the natural number \(m\) and the set of natural numbers \(M\) which must satisfy Mostowski's condition: <ul type="none"> <li>\(S(M,m)\): For everydecomposition \(m = p_{1} + \ldots + p_{s}\) of \(m\) into a sum of primes at least one \(p_{i}\) divides an element of \(M\)</li> </ul>
\(\cal M47(n,M)\) Pincus' Model IX This is the model of <a href="/articles/Pincus-1977a">Pincus [1977a]</a>, Theorem 2.1 \((E)\)
\(\cal N1\) The Basic Fraenkel Model The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\)
\(\cal N3\) Mostowski's Linearly Ordered Model \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\)
\(\cal N10\) H&ouml;ft/Howard/Mostowski Model (The model is a variation of\(\cal N3\).) \(A\) as ordered by \(\precsim\) has the same order type as therationals; \(\cal G\) is the group of all order automorphisms of \(A\); \(S\) isthe set of all subsets \(E\) of \(A\) that satisfy the following threeconditions:\item{1.} \(E\) is well ordered by \(\precsim\).\item{2.} \(E\) is bounded in \(A\).\item{3.} If \(b:\alpha\to E\) is an order preserving bijection from\(\alpha\) onto \(E\) and if \(\lambda < \alpha\) is a limit ordinal then\(\{b(\beta) : \beta < \gamma\}\) has no least upper bound in\((A,\precsim)\).\par\noindentIn <a href="/articles/H\"oft/Howard-1994">H\"oft/Howard [1994]</a> it is shown that, in \(\cal N10\), everyDedekind finite set is finite (9 is true), but \((A,\precsim)\) is alinearly ordered set with no infinite descending sequences that cannot bewell ordered (77 is false)
\(\cal N15\) Brunner/Howard Model I \(A=\{a_{i,\alpha}: i\in\omega\wedge\alpha\in\omega_1\}\)
\(\cal N38\) Howard/Rubin Model I Let \((A,\le)\) be an ordered set of atomswhich is order isomorphic to \({\Bbb Q}^\omega\), the set of all functionsfrom \(\omega\) into \(\Bbb Q\) ordered by the lexicographic ordering
\(\cal N40\) Howard/Rubin Model II A variation of \(\cal N38\)
\(\cal N41\) Another variation of \(\cal N3\) \(A=\bigcup\{B_n; n\in\omega\}\)is a disjoint union, where each \(B_n\) is denumerable and ordered like therationals by \(\le_n\)
\(\cal N53\) Good/Tree/Watson Model I Let \(A=\bigcup \{Q_n:\ n\in\omega\}\), where \(Q_n=\{a_{n,q}:q\in \Bbb{Q}\}\)

Code: 3

Comments:


Edit | Back