Hypothesis: HR 31:

\(UT(\aleph_{0},\aleph_{0},\aleph_{0})\): The countable union theorem:  The union of a denumerable set of denumerable sets is denumerable.

Conclusion: HR 322:

\(KW(WO,\infty)\), The Kinna-Wagner Selection Principle for a well ordered family of sets: For every  well ordered set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\).  (See Form 15).

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M47(n,M)\) Pincus' Model IX This is the model of <a href="/articles/Pincus-1977a">Pincus [1977a]</a>, Theorem 2.1 \((E)\)
\(\cal N2(\aleph_{\alpha})\) Jech's Model This is an extension of \(\cal N2\) in which \(A=\{a_{\gamma} : \gamma\in\omega_{\alpha}\}\); \(B\) is the corresponding set of \(\aleph_{\alpha}\) pairs of elements of \(A\); \(\cal G\)is the group of all permutations on \(A\) that leave \(B\) point-wise fixed;and \(S\) is the set of all subsets of \(A\) of cardinality less than\(\aleph_{\alpha}\)
\(\cal N3\) Mostowski's Linearly Ordered Model \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\)
\(\cal N15\) Brunner/Howard Model I \(A=\{a_{i,\alpha}: i\in\omega\wedge\alpha\in\omega_1\}\)
\(\cal N26\) Brunner/Pincus Model, a variation of \(\cal N2\) The set ofatoms \(A=\bigcup_{n\in\omega} P_n\), where the \(P_n\)'s are pairwisedisjoint denumerable sets; \(\cal G\) is the set of all permutations\(\sigma\) on \(A\) such that \(\sigma(P_n)=P_n\), for all \(n\in\omega\); and \(S\)is the set of all finite subsets of \(A\)

Code: 3

Comments:


Edit | Back