Hypothesis: HR 60:

\(C(\infty,WO)\): Every set of non-empty, well orderable sets has a choice function.
Moore, G. [1982], p 125.

Conclusion: HR 322:

\(KW(WO,\infty)\), The Kinna-Wagner Selection Principle for a well ordered family of sets: For every  well ordered set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\).  (See Form 15).

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N3\) Mostowski's Linearly Ordered Model \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\)

Code: 3

Comments:


Edit | Back