Hypothesis: HR 97:

Cardinal Representatives: For every set \(A\) there is a function \(c\) with domain \({\cal P}(A)\) such that for all \(x, y\in {\cal P}(A)\), (i) \(c(x) = c(y) \leftrightarrow x\approx y\) and (ii) \(c(x)\approx x\).  Jech [1973b] p 154.

Conclusion: HR 329:

\(MC(\infty,WO)\): For  every set \(M\) of well orderable sets such that for all \(x\in X\), \(|x|\ge 1\), there is a function \(f\) such that for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\).  (See Form 67.)

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M1(\langle\omega_1\rangle)\) Cohen/Pincus Model Pincus extends the methods of Cohen and adds a generic \(\omega_1\)-sequence, \(\langle I_{\alpha}: \alpha\in\omega_1\rangle\), of denumerable sets, where \(I_0\) is a denumerable set of generic reals, each \(I_{\alpha+1}\) is a generic set of enumerations of \(I_{\alpha}\), and for a limit ordinal \(\lambda\),\(I_{\lambda}\) is a generic set of choice functions for \(\{I_{\alpha}:\alpha \le \lambda\}\)

Code: 3

Comments:


Edit | Back