Hypothesis: HR 43:
\(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See Tarski [1948], p 96, Levy [1964], p. 136.
Conclusion: HR 344:
If \((E_i)_{i\in I}\) is a family of non-empty sets, then there is a family \((U_i)_{i\in I}\) such that \(\forall i\in I\), \(U_i\) is an ultrafilter on \(E_i\).
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M2\) Feferman's model | Add a denumerable number of generic reals to the base model, but do not collect them |
\(\cal M5(\aleph)\) Solovay's Model | An inaccessible cardinal \(\aleph\) is collapsed to \(\aleph_1\) in the outer model and then \(\cal M5(\aleph)\) is the smallest model containing the ordinals and \(\Bbb R\) |
\(\cal M18\) Shelah's Model I | Shelah modified Solovay's model, <a href="/models/Solovay-1">\(\cal M5\)</a>, and constructed a model without using an inaccessible cardinal in which the <strong>Principle of Dependent Choices</strong> (<a href="/form-classes/howard-rubin-43">Form 43</a>) is true and every set of reals has the property of Baire (<a href="/form-classes/howard-rubin-142">Form142</a> is false) |
\(\cal M38\) Shelah's Model II | In a model of \(ZFC +\) "\(\kappa\) is a strongly inaccessible cardinal", Shelah uses Levy's method of collapsing cardinals to collapse \(\kappa\) to \(\aleph_1\) similarly to <a href="/articles/Solovay-1970">Solovay [1970]</a> |
\(\cal M46(m,M)\) Pincus' Model VIII | This model depends on the natural number \(m\) and the set of natural numbers \(M\) which must satisfy Mostowski's condition: <ul type="none"> <li>\(S(M,m)\): For everydecomposition \(m = p_{1} + \ldots + p_{s}\) of \(m\) into a sum of primes at least one \(p_{i}\) divides an element of \(M\)</li> </ul> |
\(\cal M47(n,M)\) Pincus' Model IX | This is the model of <a href="/articles/Pincus-1977a">Pincus [1977a]</a>, Theorem 2.1 \((E)\) |
\(\cal N2(\aleph_{\alpha})\) Jech's Model | This is an extension of \(\cal N2\) in which \(A=\{a_{\gamma} : \gamma\in\omega_{\alpha}\}\); \(B\) is the corresponding set of \(\aleph_{\alpha}\) pairs of elements of \(A\); \(\cal G\)is the group of all permutations on \(A\) that leave \(B\) point-wise fixed;and \(S\) is the set of all subsets of \(A\) of cardinality less than\(\aleph_{\alpha}\) |
\(\cal N12(\aleph_1)\) A variation of Fraenkel's model, \(\cal N1\) | Thecardinality of \(A\) is \(\aleph_1\), \(\cal G\) is the group of allpermutations on \(A\), and \(S\) is the set of all countable subsets of \(A\).In \(\cal N12(\aleph_1)\), every Dedekind finite set is finite (9 is true),but the \(2m=m\) principle (3) is false |
\(\cal N12(\aleph_2)\) Another variation of \(\cal N1\) | Change "\(\aleph_1\)" to "\(\aleph_2\)" in \(\cal N12(\aleph_1)\) above |
\(\cal N15\) Brunner/Howard Model I | \(A=\{a_{i,\alpha}: i\in\omega\wedge\alpha\in\omega_1\}\) |
\(\cal N33\) Howard/H\.Rubin/J\.Rubin Model | \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all boundedsubsets of \(A\) |
\(\cal N56\) Howard's model III: Assume the the atoms are indexed asfollows: \(A = \{a(i,j) : i\in{\Bbb Q} \hbox{ and } j\in\omega \}\) | Foreach \(i\in \Bbb Q\), let \(A_i = \{a(i,j) : j\in \omega\}\) |
Code: 3
Comments: