Hypothesis: HR 46-K:

If \(K\) is a finite subset of \(\omega-\{0,1\}\), \(C(\infty,K)\): For every \(n\in K\), every set of \(n\)-element sets has a choice function.

Conclusion: HR 344:

If \((E_i)_{i\in I}\) is a family of non-empty sets, then there is a family \((U_i)_{i\in I}\) such that \(\forall i\in I\), \(U_i\) is an ultrafilter on \(E_i\).

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M46(m,M)\) Pincus' Model VIII This model depends on the natural number \(m\) and the set of natural numbers \(M\) which must satisfy Mostowski's condition: <ul type="none"> <li>\(S(M,m)\): For everydecomposition \(m = p_{1} + \ldots + p_{s}\) of \(m\) into a sum of primes at least one \(p_{i}\) divides an element of \(M\)</li> </ul>
\(\cal M47(n,M)\) Pincus' Model IX This is the model of <a href="/articles/Pincus-1977a">Pincus [1977a]</a>, Theorem 2.1 \((E)\)
\(\cal N2(n,M)\) Mostowski's variation of \(\cal N2(n)\) \(A\), \(B\), and \(S\)are the same as in \(\cal N2(n)\)
\(\cal N6\) Levy's Model I \(A=\{a_n : n\in\omega\}\) and \(A = \bigcup \{P_n: n\in\omega\}\), where \(P_0 = \{a_0\}\), \(P_1 = \{a_1,a_2\}\), \(P_2 =\{a_3,a_4,a_5\}\), \(P_3 = \{a_6,a_7,a_8,a_9,a_{10}\}\), \(\cdots\); in generalfor \(n>0\), \(|P_n| = p_n\), where \(p_n\) is the \(n\)th prime
\(\cal N22(p)\) Makowski/Wi\'sniewski/Mostowski Model (Where \(p\) is aprime) Let \(A=\bigcup\{A_i: i\in\omega\}\) where The \(A_i\)'s are pairwisedisjoint and each has cardinality \(p\)

Code: 3

Comments:


Edit | Back