Hypothesis: HR 42:

Löwenheim-Skolem Theorem: If a countable family of first order  sentences is satisfiable in a set \(M\) then it is satisfiable in a countable subset of \(M\). (See Moore, G. [1982], p. 251 for references.

Conclusion: HR 371:

There is an infinite, compact, Hausdorff, extremally disconnected topological space.  Morillon [1993].

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M27\) Pincus/Solovay Model I Let \(\cal M_1\) be a model of \(ZFC + V =L\)

Code: 3

Comments:


Edit | Back