Hypothesis: HR 350:
\(MC(\aleph_0,\aleph_0)\): For every denumerable set \(X\) of non-empty denumerable sets there is a function \(f\) such that for all \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\).
Conclusion: HR 373-n:
(For \(n\in\omega\), \(n\ge 2\).) \(PC(\aleph_0,n,\infty)\): Every denumerable set of \(n\)-element sets has an infinite subset with a choice function.
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N2(n)\) A generalization of \(\cal N2\) | This is a generalization of\(\cal N2\) in which there is a denumerable set of \(n\) element sets for\(n\in\omega - \{0,1\}\) |
Code: 3
Comments: