Hypothesis: HR 30:
Ordering Principle: Every set can be linearly ordered.
Conclusion: HR 384:
Closed Filter Extendability for \(T_1\) Spaces: Every closed filter in a \(T_1\) topological space can be extended to a maximal closed filter.
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M3\) Mathias' model | Mathias proves that the \(FM\) model <a href="/models/Mathias-Pincus-1">\(\cal N4\)</a> can be transformed into a model of \(ZF\), \(\cal M3\) |
\(\cal M40(\kappa)\) Pincus' Model IV | The ground model \(\cal M\), is a model of \(ZF +\) the class form of \(AC\) |
\(\cal M45\) Pincus' Model VII | This is the model of <a href="/articles/Pincus-1977a">Pincus [1977a]</a>, Theorem 2.1 \((C)\) |
\(\cal N5\) The Mathias/Pincus Model II (an extension of \(\cal N4\)) | \(A\) iscountably infinite; \(\precsim\) and \(\le\) are universal homogeneous partialand linear orderings, respectively, on \(A\), (See <a href="/articles/Jech-1973b">Jech [1973b]</a>p101 for definitions.); \(\cal G\) is the group of all order automorphismson \((A,\precsim,\le)\); and \(S\) is the set of all finite subsets of \(A\) |
\(\cal N52\) Felgner/Truss Model | Let \((\cal B,\prec)\) be a countableuniversal homogeneous linearly ordered Boolean algebra, (i.e., \(<\) is alinear ordering extending the Boolean partial ordering on \(B\)) |
\(\cal M14\) Morris' Model I | This is an extension of Mathias' model, <a href="/models/Mathias-1">\(\cal M3\)</a> |
Code: 3
Comments: