Hypothesis: HR 43:
\(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See Tarski [1948], p 96, Levy [1964], p. 136.
Conclusion: HR 307:
If \(m\) is the cardinality of the set of Vitali equivalence classes, then \(H(m) = H(2^{\aleph_0})\), where \(H\) is Hartogs aleph function and the {\it Vitali equivalence classes} are equivalence classes of the real numbers under the relation \(x\equiv y\leftrightarrow(\exists q\in {\Bbb Q})(x-y=q)\).
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M39(\kappa,\lambda)\) Kanovei's model II | This model depends on the two cardinals \(\kappa < \lambda\) such that both \(\kappa\) and \(\lambda\) have cofinality \(>\omega\) and neither \(\kappa\) nor \(\lambda\) can be written as \(\theta^+\) where \(\theta\) is a cardinal of countable cofinality and such that \(\aleph_2 \le\kappa\) |
Code: 3
Comments: