Hypothesis: HR 30:

Ordering Principle: Every set can be linearly ordered.

Conclusion: HR 49:

Order Extension Principle: Every partial ordering can be extended to a linear ordering.  Tarski [1924], p 78.

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M3\) Mathias' model Mathias proves that the \(FM\) model <a href="/models/Mathias-Pincus-1">\(\cal N4\)</a> can be transformed into a model of \(ZF\), \(\cal M3\)
\(\cal M45\) Pincus' Model VII This is the model of <a href="/articles/Pincus-1977a">Pincus [1977a]</a>, Theorem 2.1 \((C)\)
\(\cal N5\) The Mathias/Pincus Model II (an extension of \(\cal N4\)) \(A\) iscountably infinite; \(\precsim\) and \(\le\) are universal homogeneous partialand linear orderings, respectively, on \(A\), (See <a href="/articles/Jech-1973b">Jech [1973b]</a>p101 for definitions.); \(\cal G\) is the group of all order automorphismson \((A,\precsim,\le)\); and \(S\) is the set of all finite subsets of \(A\)
\(\cal M14\) Morris' Model I This is an extension of Mathias' model, <a href="/models/Mathias-1">\(\cal M3\)</a>

Code: 3

Comments:


Edit | Back