Hypothesis: HR 15:

\(KW(\infty,\infty)\) (KW), The Kinna-Wagner Selection Principle: For every  set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 81(\(n\)).  

Conclusion: HR 213:

\(C(\infty,\aleph_{1})\): If \((\forall y\in X)(|y| = \aleph_{1})\) then \(X\) has a choice function.

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M34(\aleph_1)\) Pincus' Model III Pincus proves that Cohen's model <a href="/models/Cohen-1">\(\cal M1\)</a> can be extended by adding \(\aleph_1\) generic sets along with the set \(b\) containing them and well orderings of all countable subsets of \(b\)

Code: 3

Comments:


Edit | Back