Hypothesis: HR 85:
\(C(\infty,\aleph_{0})\): Every family of denumerable sets has a choice function. Jech [1973b] p 115 prob 7.13.
Conclusion: HR 213:
\(C(\infty,\aleph_{1})\): If \((\forall y\in X)(|y| = \aleph_{1})\) then \(X\) has a choice function.
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M34(\aleph_1)\) Pincus' Model III | Pincus proves that Cohen's model <a href="/models/Cohen-1">\(\cal M1\)</a> can be extended by adding \(\aleph_1\) generic sets along with the set \(b\) containing them and well orderings of all countable subsets of \(b\) |
Code: 3
Comments: