Hypothesis: HR 43:

\(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\)  is  a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\)  then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\).  See Tarski [1948], p 96, Levy [1964], p. 136.

Conclusion: HR 142:

\(\neg  PB\):  There is a set of reals without the property of Baire.  Jech [1973b], p. 7.

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M5(\aleph)\) Solovay's Model An inaccessible cardinal \(\aleph\) is collapsed to \(\aleph_1\) in the outer model and then \(\cal M5(\aleph)\) is the smallest model containing the ordinals and \(\Bbb R\)
\(\cal M18\) Shelah's Model I Shelah modified Solovay's model, <a href="/models/Solovay-1">\(\cal M5\)</a>, and constructed a model without using an inaccessible cardinal in which the <strong>Principle of Dependent Choices</strong> (<a href="/form-classes/howard-rubin-43">Form 43</a>) is true and every set of reals has the property of Baire (<a href="/form-classes/howard-rubin-142">Form142</a> is false)

Code: 3

Comments:


Edit | Back