Hypothesis: HR 214:
\(Z(\omega)\): For every family \(A\) of infinite sets, there is a function \(f\) such that for all \(y\in A\), \(f(y)\) is a non-empty subset of \(y\) and \(|f(y)|=\aleph_{0}\).
Conclusion: HR 99:
Rado's Selection Lemma: Let \(\{K(\lambda): \lambda \in\Lambda\}\) be a family of finite subsets (of \(X\)) and suppose for each finite \(S\subseteq\Lambda\) there is a function \(\gamma(S): S \rightarrow X\) such that \((\forall\lambda\in S)(\gamma(S)(\lambda)\in K(\lambda))\). Then there is an \(f: \Lambda\rightarrow X\) such that for every finite \(S\subseteq\Lambda\) there is a finite \(T\) such that \(S\subseteq T\subseteq\Lambda\) and such that \(f\) and \(\gamma (T)\) agree on S.
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M43\) Pincus' Model V | This is the model of <a href="/articles/Pincus-1977a">Pincus [1977a]</a>, Theorem 2.1 \((A)\) |
\(\cal M45\) Pincus' Model VII | This is the model of <a href="/articles/Pincus-1977a">Pincus [1977a]</a>, Theorem 2.1 \((C)\) |
Code: 3
Comments: