Hypothesis: HR 130:
\({\cal P}(\Bbb R)\) is well orderable.
Conclusion: HR 46-K:
If \(K\) is a finite subset of \(\omega-\{0,1\}\), \(C(\infty,K)\): For every \(n\in K\), every set of \(n\)-element sets has a choice function.
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N2(n)\) A generalization of \(\cal N2\) | This is a generalization of\(\cal N2\) in which there is a denumerable set of \(n\) element sets for\(n\in\omega - \{0,1\}\) |
\(\cal N2(n,M)\) Mostowski's variation of \(\cal N2(n)\) | \(A\), \(B\), and \(S\)are the same as in \(\cal N2(n)\) |
Code: 3
Comments: