Hypothesis: HR 309:
The Banach-Tarski Paradox: There are three finite partitions \(\{P_1,\ldots\), \(P_n\}\), \(\{Q_1,\ldots,Q_r\}\) and \(\{S_1,\ldots,S_n, T_1,\ldots,T_r\}\) of \(B^3 = \{x\in {\Bbb R}^3 : |x| \le 1\}\) such that \(P_i\) is congruent to \(S_i\) for \(1\le i\le n\) and \(Q_i\) is congruent to \(T_i\) for \(1\le i\le r\).
Conclusion: HR 103:
If \((P,<)\) is a linear ordering and \(|P| > \aleph_{1}\) then some initial segment of \(P\) is uncountable. Jech [1973b], p 164 prob 11.21.
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N14\) Morris/Jech Model | \(A = \bigcup\{A_{\alpha}: \alpha <\omega_1\}\), where the \(A_{\alpha}\)'s are pairwise disjoint, each iscountably infinite, and each is ordered like the rationals; \(\cal G\) isthe group of all permutations on \(A\) that leave each \(A_{\alpha}\) fixedand preserve the ordering on each \(A_{\alpha}\); and \(S = \{B_{\gamma}:\gamma < \omega_1\}\), where \(B_{\gamma}= \bigcup\{A_{\alpha}: \alpha <\gamma\}\) |
Code: 3
Comments: