Hypothesis: HR 313:

\(\Bbb Z\) (the set of integers under addition) is amenable.  (\(G\) is {\it amenable} if there is a finitely additive measure \(\mu\) on \(\cal P(G)\) such that \(\mu(G) = 1\) and \(\forall A\subseteq G, \forall g\in G\), \(\mu(gA)=\mu(A)\).)

Conclusion: HR 124:

Every operator on a Hilbert space with an amorphous base is the direct sum of a finite matrix and  a  scalar operator.  (A set is amorphous if it is not the union of two disjoint infinite sets.)

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N24\) Hickman's Model I This model is a variation of \(\cal N2\)

Code: 3

Comments:


Edit | Back