Hypothesis: HR 309:
The Banach-Tarski Paradox: There are three finite partitions \(\{P_1,\ldots\), \(P_n\}\), \(\{Q_1,\ldots,Q_r\}\) and \(\{S_1,\ldots,S_n, T_1,\ldots,T_r\}\) of \(B^3 = \{x\in {\Bbb R}^3 : |x| \le 1\}\) such that \(P_i\) is congruent to \(S_i\) for \(1\le i\le n\) and \(Q_i\) is congruent to \(T_i\) for \(1\le i\le r\).
Conclusion: HR 136-k:
Surjective Cardinal Cancellation (depends on \(k\in\omega-\{0\}\)): For all cardinals \(x\) and \(y\), \(kx\le^* ky\) implies \(x\le^* y\).
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N20\) Truss' Model II | <p> Let \(X=\{a(i,k,l): i\in 2, k\in \Bbb Z, l\in\omega\}\), \(Y=\{a(i,j,k,l): i,j\in 2, k\in\Bbb Z, i\in\omega\}\) and \(A\) is the disjoint union of \(X\) and \(Y\) </p> |
Code: 3
Comments: