Hypothesis: HR 309:

The Banach-Tarski Paradox: There are three finite partitions \(\{P_1,\ldots\), \(P_n\}\), \(\{Q_1,\ldots,Q_r\}\) and \(\{S_1,\ldots,S_n, T_1,\ldots,T_r\}\) of \(B^3 = \{x\in {\Bbb R}^3 : |x| \le 1\}\) such that \(P_i\) is congruent to \(S_i\) for \(1\le i\le n\) and \(Q_i\) is congruent to \(T_i\) for \(1\le i\le r\).

Conclusion: HR 183-alpha:

There are no \(\aleph_{\alpha}\) minimal  sets.  That is, there are no sets \(X\) such that

  1. \(|X|\) is incomparable with \(\aleph_{\alpha}\)
  2. \(\aleph_{\beta}<|X|\) for every \(\beta < \alpha \) and
  3. \(\forall Y\subseteq X, |Y|<\aleph_{\alpha}\) or \(|X-Y| <\aleph_{\alpha}\).

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N27\) Hickman's Model II Let \(A\) be a set with cardinality\(\aleph_1\) such that \(A=\{(a_{\alpha},b_{\beta}) : \alpha < \omega, \beta< \omega_1\}\)

Code: 3

Comments:


Edit | Back