Hypothesis: HR 313:

\(\Bbb Z\) (the set of integers under addition) is amenable.  (\(G\) is {\it amenable} if there is a finitely additive measure \(\mu\) on \(\cal P(G)\) such that \(\mu(G) = 1\) and \(\forall A\subseteq G, \forall g\in G\), \(\mu(gA)=\mu(A)\).)

Conclusion: HR 217:

Every infinite partially ordered set has either an infinite chain or an infinite antichain.

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N2\) The Second Fraenkel Model The set of atoms \(A=\{a_i : i\in\omega\}\) is partitioned into two element sets \(B =\{\{a_{2i},a_{2i+1}\} : i\in\omega\}\). \(\mathcal G \) is the group of all permutations of \( A \) that leave \( B \) pointwise fixed and \( S \) is the set of all finite subsets of \( A \).
\(\cal N34\) Pincus' Model X For each \(q\in\Bbb Q\), let \(C_q=\{a_q,b_q\}\), a pair of atoms and let \(A=\bigcup_{q\in\Bbb Q}C_q\)

Code: 3

Comments:


Edit | Back