Hypothesis: HR 309:

The Banach-Tarski Paradox: There are three finite partitions \(\{P_1,\ldots\), \(P_n\}\), \(\{Q_1,\ldots,Q_r\}\) and \(\{S_1,\ldots,S_n, T_1,\ldots,T_r\}\) of \(B^3 = \{x\in {\Bbb R}^3 : |x| \le 1\}\) such that \(P_i\) is congruent to \(S_i\) for \(1\le i\le n\) and \(Q_i\) is congruent to \(T_i\) for \(1\le i\le r\).

Conclusion: HR 220-p:

Suppose \(p\in\omega\) and \(p\) is a prime. Any two elementary Abelian \(p\)-groups (all non-trivial elements have order \(p\)) of the same cardinality are isomorphic.

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N42(p)\) Hickman's Model IV This model is an extension of \(\cal N32\)
\(\cal N45(p)\) Howard/Rubin Model III Let \(p\) be a prime

Code: 3

Comments:


Edit | Back