Hypothesis: HR 86-alpha:

\(C(\aleph_{\alpha},\infty)\): If \(X\) is a set of non-empty sets such that \(|X| = \aleph_{\alpha }\), then \(X\) has a choice function.

Conclusion: HR 152:

\(D_{\aleph_{0}}\): Every non-well-orderable set is the union of a pairwise disjoint, well orderable family of denumerable sets.  (See note 27 for \(D_{\kappa}\), \(\kappa\) a well ordered cardinal.)

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M2\) Feferman's model Add a denumerable number of generic reals to the base model, but do not collect them
\(\cal M13\) Feferman/Solovay Model This model is an extension of <a href="/models/Feferman-1">\(\cal M2\)</a> in which there are \(\omega_1\) generic real numbers, but no set to collect them
\(\cal M25\) Freyd's Model Using topos-theoretic methods due to Fourman, Freyd constructs a Boolean-valued model of \(ZF\) in which every well ordered family of sets has a choice function (<a href="/form-classes/howard-rubin-40">Form 40</a> is true), but \(C(|\Bbb R|,\infty)\) (<a href="/form-classes/howard-rubin-181">Form 181</a>) is false
\(\cal M40(\kappa)\) Pincus' Model IV The ground model \(\cal M\), is a model of \(ZF +\) the class form of \(AC\)
\(\cal N12(\aleph_1)\) A variation of Fraenkel's model, \(\cal N1\) Thecardinality of \(A\) is \(\aleph_1\), \(\cal G\) is the group of allpermutations on \(A\), and \(S\) is the set of all countable subsets of \(A\).In \(\cal N12(\aleph_1)\), every Dedekind finite set is finite (9 is true),but the \(2m=m\) principle (3) is false
\(\cal N12(\aleph_2)\) Another variation of \(\cal N1\) Change "\(\aleph_1\)" to "\(\aleph_2\)" in \(\cal N12(\aleph_1)\) above
\(\cal N33\) Howard/H\.Rubin/J\.Rubin Model \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all boundedsubsets of \(A\)
\(\cal N36(\beta)\) Brunner/Howard Model III This model is a modificationof \(\cal N15\)
\(\cal N56\) Howard's model III: Assume the the atoms are indexed asfollows: \(A = \{a(i,j) : i\in{\Bbb Q} \hbox{ and } j\in\omega \}\) Foreach \(i\in \Bbb Q\), let \(A_i = \{a(i,j) : j\in \omega\}\)

Code: 3

Comments:


Edit | Back