Hypothesis: HR 309:

The Banach-Tarski Paradox: There are three finite partitions \(\{P_1,\ldots\), \(P_n\}\), \(\{Q_1,\ldots,Q_r\}\) and \(\{S_1,\ldots,S_n, T_1,\ldots,T_r\}\) of \(B^3 = \{x\in {\Bbb R}^3 : |x| \le 1\}\) such that \(P_i\) is congruent to \(S_i\) for \(1\le i\le n\) and \(Q_i\) is congruent to \(T_i\) for \(1\le i\le r\).

Conclusion: HR 236:

If \(V\) is a vector space with a basis and \(S\) is a linearly independent subset of \(V\) such that no proper extension of \(S\) is a basis for \(V\), then \(S\) is a basis for \(V\).

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N44\) Gross' model \(A\) is a vector space over a finite field withbasis \(B = \bigcup_{i\in \omega} B_i\) where the \(B_i\) are pairwisedisjoint and \(|B_i| = 4\) for each \(i\in\omega\)

Code: 3

Comments:


Edit | Back