Hypothesis: HR 313:

\(\Bbb Z\) (the set of integers under addition) is amenable.  (\(G\) is {\it amenable} if there is a finitely additive measure \(\mu\) on \(\cal P(G)\) such that \(\mu(G) = 1\) and \(\forall A\subseteq G, \forall g\in G\), \(\mu(gA)=\mu(A)\).)

Conclusion: HR 285:

Let \(E\) be a set and \(f: E\to E\), then \(f\) has a fixed point if and only if \(E\) is not the union of three mutually disjoint sets \(E_1\), \(E_2\) and \(E_3\) such that \(E_i \cap f(E_i) = \emptyset\) for \(i=1, 2, 3\).

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N22(p)\) Makowski/Wi\'sniewski/Mostowski Model (Where \(p\) is aprime) Let \(A=\bigcup\{A_i: i\in\omega\}\) where The \(A_i\)'s are pairwisedisjoint and each has cardinality \(p\)

Code: 3

Comments:


Edit | Back