Hypothesis: HR 309:
The Banach-Tarski Paradox: There are three finite partitions \(\{P_1,\ldots\), \(P_n\}\), \(\{Q_1,\ldots,Q_r\}\) and \(\{S_1,\ldots,S_n, T_1,\ldots,T_r\}\) of \(B^3 = \{x\in {\Bbb R}^3 : |x| \le 1\}\) such that \(P_i\) is congruent to \(S_i\) for \(1\le i\le n\) and \(Q_i\) is congruent to \(T_i\) for \(1\le i\le r\).
Conclusion: HR 293:
For all sets \(x\) and \(y\), if \(x\) can be linearly ordered and there is a mapping of \(x\) onto \(y\), then \(y\) can be linearly ordered.
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N28\) Blass' Permutation Model | The set \(A=\{a^i_{\xi}: i\in \Bbb Z, \xi\in\aleph_1\}\) |
\(\cal N37\) A variation of Blass' model, \(\cal N28\) | Let \(A=\{a_{i,j}:i\in\omega, j\in\Bbb Z\}\) |
Code: 3
Comments: