Hypothesis: HR 0:  \(0 = 0\).

Conclusion: HR 56:

\(\aleph(2^{\aleph_{0}})\neq\aleph_{\omega}\). (\(\aleph(2^{\aleph_{0}})\) is Hartogs' aleph, the least \(\aleph\) not \(\le 2^{\aleph_{0}}\).)
Mathias [1979], p 125.

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M10\) Derrick/Drake Model Let \(\cal M\) be a model of \(ZF + GCH\). Add to \(\cal M\) generic functions \(f_n\) for each \(n\in\omega\), where \(f_n:\omega_n\to\cal P(\omega)\), but do not add \(\{f_n: n\in\omega\}\)

Code: 3

Comments:


Edit | Back