Hypothesis: HR 313:

\(\Bbb Z\) (the set of integers under addition) is amenable.  (\(G\) is {\it amenable} if there is a finitely additive measure \(\mu\) on \(\cal P(G)\) such that \(\mu(G) = 1\) and \(\forall A\subseteq G, \forall g\in G\), \(\mu(gA)=\mu(A)\).)

Conclusion: HR 342-n:

(For \(n\in\omega\), \(n\ge 2\).) \(PC(\infty,n,\infty)\):  Every infinite family of \(n\)-element sets has an infinite subfamily with a choice function. (See Form 166.)

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N50(E)\) Brunner's Model III \(E\) is a finite set of prime numbers.For each \(p\in E\) and \(n\in\omega\), let \(A_{p,n}\) be a set of atoms ofcardinality \(p^n\)

Code: 3

Comments:


Edit | Back