Hypothesis: HR 313:
\(\Bbb Z\) (the set of integers under addition) is amenable. (\(G\) is {\it amenable} if there is a finitely additive measure \(\mu\) on \(\cal P(G)\) such that \(\mu(G) = 1\) and \(\forall A\subseteq G, \forall g\in G\), \(\mu(gA)=\mu(A)\).)
Conclusion: HR 342-n:
(For \(n\in\omega\), \(n\ge 2\).) \(PC(\infty,n,\infty)\): Every infinite family of \(n\)-element sets has an infinite subfamily with a choice function. (See Form 166.)
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N50(E)\) Brunner's Model III | \(E\) is a finite set of prime numbers.For each \(p\in E\) and \(n\in\omega\), let \(A_{p,n}\) be a set of atoms ofcardinality \(p^n\) |
Code: 3
Comments: