Hypothesis: HR 0: \(0 = 0\).
Conclusion: HR 236:
If \(V\) is a vector space with a basis and \(S\) is a linearly independent subset of \(V\) such that no proper extension of \(S\) is a basis for \(V\), then \(S\) is a basis for \(V\).
List of models where hypothesis is true and the conclusion is false:
| Name | Statement | 
|---|---|
| \(\cal N44\) Gross' model | \(A\) is a vector space over a finite field withbasis \(B = \bigcup_{i\in \omega} B_i\) where the \(B_i\) are pairwisedisjoint and \(|B_i| = 4\) for each \(i\in\omega\) | 
Code: 3
Comments: