Hypothesis: HR 305:
There are \(2^{\aleph_0}\) Vitali equivalence classes. (Vitali equivalence classes are equivalence classes of the real numbers under the relation \(x\equiv y\leftrightarrow(\exists q\in{\Bbb Q})(x-y=q)\).). \ac{Kanovei} \cite{1991}.
Conclusion: HR 243:
Every principal ideal domain is a unique factorization domain.
List of models where hypothesis is true and the conclusion is false:
| Name | Statement | 
|---|---|
| \(\cal N31\) Läuchli's Model IV | The set \(A\) is denumerable | 
Code: 3
Comments: