Hypothesis: HR 165:
\(C(WO,WO)\): Every well ordered family of non-empty, well orderable sets has a choice function.
Conclusion: HR 31:
\(UT(\aleph_{0},\aleph_{0},\aleph_{0})\): The countable union theorem: The union of a denumerable set of denumerable sets is denumerable.
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M12(\aleph)\) Truss' Model I | This is a variation of Solovay's model, <a href="/models/Solovay-1">\(\cal M5(\aleph)\)</a> in which \(\aleph\) is singular |
\(\cal M20\) Felgner's Model I | Let \(\cal M\) be a model of \(ZF + V = L\). Felgner defines forcing conditions that force \(\aleph_{\omega}\) in \(\cal M\) to be \(\aleph_1\) |
Code: 3
Comments: