This non-implication,
Form 178-n-N \( \not \Rightarrow \)
Form 304,
whose code is 4, is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 60 | <p> \(C(\infty,WO)\): Every set of non-empty, well orderable sets has a choice function.<br /> <a href="/books/2">Moore, G. [1982]</a>, p 125. </p> |
Conclusion | Statement |
---|---|
Form 304 | <p> There does not exist a \(T_2\) topological space \(X\) such that every infinite subset of \(X\) contains an infinite compact subset. </p> |
The conclusion Form 178-n-N \( \not \Rightarrow \) Form 304 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N3\) Mostowski's Linearly Ordered Model | \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\) |