This non-implication, Form 75 \( \not \Rightarrow \) Form 398, whose code is 4, is constructed around a proven non-implication as follows:

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 7623, whose string of implications is:
    214 \(\Rightarrow\) 152 \(\Rightarrow\) 4 \(\Rightarrow\) 405 \(\Rightarrow\) 75
  • A proven non-implication whose code is 3. In this case, it's Code 3: 1398, Form 214 \( \not \Rightarrow \) Form 357 whose summary information is:
    Hypothesis Statement
    Form 214 <p> \(Z(\omega)\): For every family \(A\) of infinite sets, there is a function \(f\) such that for all \(y\in A\), \(f(y)\) is a non-empty subset of \(y\) and \(|f(y)|=\aleph_{0}\). </p>

    Conclusion Statement
    Form 357 <p> \(KW(\aleph_0,\aleph_0)\), <strong>The Kinna-Wagner Selection Principle</strong> for a denumerable family of denumerable sets: For every denumerable set \(M\) of denumerable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 8941, whose string of implications is:
    398 \(\Rightarrow\) 322 \(\Rightarrow\) 324 \(\Rightarrow\) 357

The conclusion Form 75 \( \not \Rightarrow \) Form 398 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M29\) Pincus' Model II Pincus constructs a generic extension \(M[I]\) of a model \(M\) of \(ZF +\) class choice \(+ GCH\) in which \(I=\bigcup_{n\in\omega}I_n\), \(I_{-1}=2\) and \(I_{n+1}\) is a denumerable set of independent functions from \(\omega\) onto \(I_n\)

Edit | Back