This non-implication, Form 198 \( \not \Rightarrow \) Form 150, whose code is 4, is constructed around a proven non-implication as follows:

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 10214, whose string of implications is:
    9 \(\Rightarrow\) 198
  • A proven non-implication whose code is 3. In this case, it's Code 3: 1378, Form 9 \( \not \Rightarrow \) Form 350 whose summary information is:
    Hypothesis Statement
    Form 9 <p>Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) <a href="/books/8">Jech [1973b]</a>: \(E(I,IV)\) <a href="/articles/Howard-Yorke-1989">Howard/Yorke [1989]</a>): Every Dedekind finite set is finite. </p>

    Conclusion Statement
    Form 350 <p> \(MC(\aleph_0,\aleph_0)\): For every denumerable set \(X\) of non-empty denumerable sets there is a function \(f\) such that for all \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\). </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 2445, whose string of implications is:
    150 \(\Rightarrow\) 32 \(\Rightarrow\) 350

The conclusion Form 198 \( \not \Rightarrow \) Form 150 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M29\) Pincus' Model II Pincus constructs a generic extension \(M[I]\) of a model \(M\) of \(ZF +\) class choice \(+ GCH\) in which \(I=\bigcup_{n\in\omega}I_n\), \(I_{-1}=2\) and \(I_{n+1}\) is a denumerable set of independent functions from \(\omega\) onto \(I_n\)
\(\cal N41\) Another variation of \(\cal N3\) \(A=\bigcup\{B_n; n\in\omega\}\)is a disjoint union, where each \(B_n\) is denumerable and ordered like therationals by \(\le_n\)

Edit | Back