This non-implication,
Form 83 \( \not \Rightarrow \)
Form 211,
whose code is 4, is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 82 | <p> \(E(I,III)\) (<a href="/articles/Howard-Yorke-1989">Howard/Yorke [1989]</a>): If \(X\) is infinite then \(\cal P(X)\) is Dedekind infinite. (\(X\) is finite \(\Leftrightarrow {\cal P}(X)\) is Dedekind finite.) </p> |
Conclusion | Statement |
---|---|
Form 13 | <p> Every Dedekind finite subset of \({\Bbb R}\) is finite. </p> |
The conclusion Form 83 \( \not \Rightarrow \) Form 211 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M1\) Cohen's original model | Add a denumerable number of generic reals (subsets of \(\omega\)), \(a_1\), \(a_2\), \(\cdots\), along with the set \(b\) containing them |