This non-implication,
Form 208 \( \not \Rightarrow \)
Form 261,
whose code is 4, is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 40 | <p> \(C(WO,\infty)\): Every well orderable set of non-empty sets has a choice function. <a href="/books/2">Moore, G. [1982]</a>, p 325. </p> |
Conclusion | Statement |
---|---|
Form 260 | <p> \(Z(TR\&C,P)\): If \((X,R)\) is a transitive and connected relation in which every partially ordered subset has an upper bound, then \((X,R)\) has a maximal element. </p> |
The conclusion Form 208 \( \not \Rightarrow \) Form 261 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N33\) Howard/H\.Rubin/J\.Rubin Model | \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all boundedsubsets of \(A\) |