This non-implication, Form 216 \( \not \Rightarrow \) Form 270, whose code is 4, is constructed around a proven non-implication as follows:

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 1732, whose string of implications is:
    325 \(\Rightarrow\) 17 \(\Rightarrow\) 132 \(\Rightarrow\) 10 \(\Rightarrow\) 216
  • A proven non-implication whose code is 3. In this case, it's Code 3: 919, Form 325 \( \not \Rightarrow \) Form 64 whose summary information is:
    Hypothesis Statement
    Form 325 <p> <strong>Ramsey's Theorem II:</strong> \(\forall n,m\in\omega\), if A is an infinite set and the family of all \(m\) element subsets of \(A\) is partitioned into \(n\) sets \(S_{j}, 1\le j\le n\), then there is an infinite subset \(B\subseteq A\) such that all \(m\) element subsets of \(B\) belong to the same \(S_{j}\). (Also, see <a href="/form-classes/howard-rubin-17">Form 17</a>.) </p>

    Conclusion Statement
    Form 64 <p> \(E(I,Ia)\) There are no amorphous sets. (Equivalently, every infinite set is the union of two disjoint infinite sets.) </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 4490, whose string of implications is:
    270 \(\Rightarrow\) 62 \(\Rightarrow\) 61 \(\Rightarrow\) 11 \(\Rightarrow\) 12 \(\Rightarrow\) 336-n \(\Rightarrow\) 64

The conclusion Form 216 \( \not \Rightarrow \) Form 270 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N1\) The Basic Fraenkel Model The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\)

Edit | Back