This non-implication, Form 221 \( \not \Rightarrow \) Form 330, whose code is 4, is constructed around a proven non-implication as follows:

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 10226, whose string of implications is:
    63 \(\Rightarrow\) 221
  • A proven non-implication whose code is 3. In this case, it's Code 3: 1337, Form 63 \( \not \Rightarrow \) Form 330 whose summary information is:
    Hypothesis Statement
    Form 63 <p> \(SPI\): Weak ultrafilter principle: Every infinite set has a non-trivial ultrafilter. <br /> <a href="/books/8">Jech [1973b]</a>, p 172 prob 8.5. </p>

    Conclusion Statement
    Form 330 <p> \(MC(WO,WO)\): For every well ordered set \(X\) of well orderable sets such that for all \(x\in X\), \(|x|\ge 1\), there is a function \(f\) such that for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\).  (See <a href="/form-classes/howard-rubin-67">Form 67</a>.) </p>

  • This non-implication was constructed without the use of this last code 2/1 implication

The conclusion Form 221 \( \not \Rightarrow \) Form 330 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N15\) Brunner/Howard Model I \(A=\{a_{i,\alpha}: i\in\omega\wedge\alpha\in\omega_1\}\)
\(\cal N41\) Another variation of \(\cal N3\) \(A=\bigcup\{B_n; n\in\omega\}\)is a disjoint union, where each \(B_n\) is denumerable and ordered like therationals by \(\le_n\)

Edit | Back