This non-implication,
Form 0 \( \not \Rightarrow \)
Form 96,
whose code is 4, is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 0 | \(0 = 0\). |
Conclusion | Statement |
---|---|
Form 235 | <p> If \(V\) is a vector space and \(B_{1}\) and \(B_{2}\) are bases for \(V\) then \(|B_{1}|\) and \(|B_{2}|\) are comparable. </p> |
The conclusion Form 0 \( \not \Rightarrow \) Form 96 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N13\) L\"auchli/Jech Model | \(A = B_1\cup B_2\), where \(B_1=\bigcup\{A_{j1} : j\in\omega\}\), and \(B_2 = \bigcup\{A_{j2} :j\in\omega\}\), and each \(A_{ji}\) is a 6-element set |