This non-implication,
Form 241 \( \not \Rightarrow \)
Form 325,
whose code is 4, is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 14 | <p> <strong>BPI:</strong> Every Boolean algebra has a prime ideal. </p> |
Conclusion | Statement |
---|---|
Form 17 | <p> <strong>Ramsey's Theorem I:</strong> If \(A\) is an infinite set and the family of all 2 element subsets of \(A\) is partitioned into 2 sets \(X\) and \(Y\), then there is an infinite subset \(B\subseteq A\) such that all 2 element subsets of \(B\) belong to \(X\) or all 2 element subsets of \(B\) belong to \(Y\). (Also, see <a href="/form-classes/howard-rubin-325">Form 325</a>.), <a href="/books/8">Jech [1973b]</a>, p 164 prob 11.20. </p> |
The conclusion Form 241 \( \not \Rightarrow \) Form 325 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M1\) Cohen's original model | Add a denumerable number of generic reals (subsets of \(\omega\)), \(a_1\), \(a_2\), \(\cdots\), along with the set \(b\) containing them |