This non-implication,
Form 285 \( \not \Rightarrow \)
Form 50,
whose code is 4, is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 15 | <p> \(KW(\infty,\infty)\) (KW), <strong>The Kinna-Wagner Selection Principle:</strong> For every set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). (See <a href="/form-classes/howard-rubin-81($n$)">Form 81(\(n\))</a>. </p> |
Conclusion | Statement |
---|---|
Form 14 | <p> <strong>BPI:</strong> Every Boolean algebra has a prime ideal. </p> |
The conclusion Form 285 \( \not \Rightarrow \) Form 50 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M3\) Mathias' model | Mathias proves that the \(FM\) model <a href="/models/Mathias-Pincus-1">\(\cal N4\)</a> can be transformed into a model of \(ZF\), \(\cal M3\) |