This non-implication,
Form 295 \( \not \Rightarrow \)
Form 89,
whose code is 4, is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 295 | <p> <strong>DO:</strong> Every infinite set has a dense linear ordering. </p> |
Conclusion | Statement |
---|---|
Form 118 | <p> Every linearly orderable topological space is normal. <a href="/books/28">Birkhoff [1967]</a>, p 241. </p> |
The conclusion Form 295 \( \not \Rightarrow \) Form 89 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M29\) Pincus' Model II | Pincus constructs a generic extension \(M[I]\) of a model \(M\) of \(ZF +\) class choice \(+ GCH\) in which \(I=\bigcup_{n\in\omega}I_n\), \(I_{-1}=2\) and \(I_{n+1}\) is a denumerable set of independent functions from \(\omega\) onto \(I_n\) |
\(\cal M44\) Pincus' Model VI | This is the model of <a href="/articles/Pincus-1977a">Pincus [1977a]</a>, Theorem 2.1 \((B)\) |
\(\cal N38\) Howard/Rubin Model I | Let \((A,\le)\) be an ordered set of atomswhich is order isomorphic to \({\Bbb Q}^\omega\), the set of all functionsfrom \(\omega\) into \(\Bbb Q\) ordered by the lexicographic ordering |
\(\cal N40\) Howard/Rubin Model II | A variation of \(\cal N38\) |
\(\cal N48\) Pincus' Model XI | \(\cal A=(A,<,C_0,C_1,\dots)\) is called an<em>ordered colored set</em> (OC set) if \(<\) is a linear ordering on \(A\)and the \(C_i\), for \(i\in\omega\) are subsets of \(A\) such that for each\(a\in A\) there is exactly one \(n\in\omega\) such that \(a\in C_n\) |