This non-implication, Form 10 \( \not \Rightarrow \) Form 65, whose code is 4, is constructed around a proven non-implication as follows:

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 10084, whose string of implications is:
    60 \(\Rightarrow\) 10
  • A proven non-implication whose code is 3. In this case, it's Code 3: 161, Form 60 \( \not \Rightarrow \) Form 65 whose summary information is:
    Hypothesis Statement
    Form 60 <p> \(C(\infty,WO)\): Every set of non-empty, well orderable sets has a choice function.<br /> <a href="/books/2">Moore, G. [1982]</a>, p 125. </p>

    Conclusion Statement
    Form 65 <p> <strong>The Krein-Milman Theorem:</strong> Let \(K\) be a compact convex set in a locally convex topological vector space \(X\). Then \(K\) has an extreme point. (An <em>extreme point</em> is a point which is not an interior point of any line segment which lies in  \(K\).) <a href="/books/23">Rubin, H./Rubin, J. [1985]</a> p. 177. <p>

  • This non-implication was constructed without the use of this last code 2/1 implication

The conclusion Form 10 \( \not \Rightarrow \) Form 65 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M1\) Cohen's original model Add a denumerable number of generic reals (subsets of \(\omega\)), \(a_1\), \(a_2\), \(\cdots\), along with the set \(b\) containing them

Edit | Back