This non-implication, Form 342-n \( \not \Rightarrow \) Form 350, whose code is 4, is constructed around a proven non-implication as follows:

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 9994, whose string of implications is:
    9 \(\Rightarrow\) 342-n
  • A proven non-implication whose code is 3. In this case, it's Code 3: 1378, Form 9 \( \not \Rightarrow \) Form 350 whose summary information is:
    Hypothesis Statement
    Form 9 <p>Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) <a href="/books/8">Jech [1973b]</a>: \(E(I,IV)\) <a href="/articles/Howard-Yorke-1989">Howard/Yorke [1989]</a>): Every Dedekind finite set is finite. </p>

    Conclusion Statement
    Form 350 <p> \(MC(\aleph_0,\aleph_0)\): For every denumerable set \(X\) of non-empty denumerable sets there is a function \(f\) such that for all \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\). </p>

  • This non-implication was constructed without the use of this last code 2/1 implication

The conclusion Form 342-n \( \not \Rightarrow \) Form 350 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal M29\) Pincus' Model II Pincus constructs a generic extension \(M[I]\) of a model \(M\) of \(ZF +\) class choice \(+ GCH\) in which \(I=\bigcup_{n\in\omega}I_n\), \(I_{-1}=2\) and \(I_{n+1}\) is a denumerable set of independent functions from \(\omega\) onto \(I_n\)
\(\cal N41\) Another variation of \(\cal N3\) \(A=\bigcup\{B_n; n\in\omega\}\)is a disjoint union, where each \(B_n\) is denumerable and ordered like therationals by \(\le_n\)

Edit | Back