This non-implication,
Form 352 \( \not \Rightarrow \)
Form 206,
whose code is 4, is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 43 | <p> \(DC(\omega)\) (DC), <strong>Principle of Dependent Choices:</strong> If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See <a href="/articles/Tarski-1948">Tarski [1948]</a>, p 96, <a href="/articles/Levy-1964">Levy [1964]</a>, p. 136. </p> |
Conclusion | Statement |
---|---|
Form 223 | <p> There is an infinite set \(X\) and a non-principal measure on \(\cal P(X)\). </p> |
The conclusion Form 352 \( \not \Rightarrow \) Form 206 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal M30\) Pincus/Solovay Model II | In this construction, an \(\omega_1\) sequence of generic reals is added to a model of \(ZFC\) in such a way that the <strong>Principle of Dependent Choices</strong> (<a href="/form-classes/howard-rubin-43">Form 43</a>) is true, but no nonprincipal measure exists (<a href="/form-classes/howard-rubin-223">Form 223</a> is false) |